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FOREWORD 

Advanced infrastructure-based detection technologies, such as infrared thermal imaging sensors, 
light detection and ranging (LiDAR), and radar, have the potential to improve vulnerable road 
user detection and vulnerable road user volumetric data collected at real world intersections and 
midblock crossings. This improved volumetric data can help provide researchers and government 
agencies with a better understanding of roadway usage and vulnerable road user exposure to 
crash risk. This understanding can provide insight into which intersections and midblock 
crossings have the greatest potential risks to various kinds of vulnerable road users and thus 
require the most intervention to reduce the risk of crashes, potentially reducing the total number 
of fatalities and injuries to vulnerable road users. 

The current study sought to evaluate the strengths and weaknesses of two of these types of 
sensors. The research team evaluated infrared thermal imaging sensors and LiDAR sensors and 
then compared the two sensor types. This report may be of interest to State and local 
transportation agencies when planning to implement infrastructure-based vulnerable road user 
detection technologies at intersections and midblock crossings to reduce injuries and fatalities 
involving vulnerable road users. 
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CHAPTER 1. INTRODUCTION 

INTRODUCTION 

According to the National Highway Traffic Safety Administration, 7,522 pedestrian deaths and 
1,105 pedalcyclist deaths occurred in 2022, and nonoccupants of vehicles accounted for 
21 percent of all traffic fatalities (National Center for Statistics and Analysis (NCSA) 2024b, 
2024a). About two-thirds of pedestrian fatalities occurred after dark (77 percent), 20 percent 
during daylight hours, 2 percent at dusk, and 2 percent at dawn. About half of pedalcyclist 
fatalities occurred after dark (52 percent), 44 percent during daylight hours, and 4 percent at dusk 
or dawn. In terms of locations, 16 percent of pedestrian fatalities and 29 percent of pedalcyclist 
fatalities occurred at intersections. Most of these fatalities (84 percent of pedestrians and 
85 percent of pedalcyclists) occurred in urban, not rural, areas. 

Vulnerable road users are at greater risk of serious injury or death if they are involved in a traffic 
crash (Organisation for Economic Co-operation and Development 1998). According to Walker 
(2022), the Federal Highway Administration (FHWA) says:  

A vulnerable road user is a nonmotorist with a fatality analysis reporting system (FARS) 
person attribute code of pedestrian, bicyclist, other cyclist, person on personal 
conveyance, or injured person who is or is equivalent to a pedestrian or pedalcyclist as 
defined in the ANSI [American National Standards Institute] D16.1-2007 (National 
Safety Council 2007). See U.S. Code (U.S.C.) 23 §148(a)(15) and Code of Federal 
Regulations (CFR) 23 924.3 §490.205 [GPO 2024a, 2024b]. A vulnerable road user may 
include people walking, biking, or rolling. Please note that a vulnerable road user: 

• Includes a highway worker on foot in a work zone, given they are considered a 
pedestrian. 

• Does not include a motorcyclist. 

The challenges associated with collecting nonmotorized data are well documented. FHWA’s 
Traffic Monitoring Guide and the National Cooperative Highway Research Program’s (NCHRP) 
NCHRP Report 797: Guidebook on Pedestrian and Bicycle Volume Data Collection outline 
several of those challenges (FHWA 2016; Ryus et al. 2014). 

Researchers have discussed measuring pedestrian exposure to crash risk for more than three 
decades, but a consensus on an effective method for measuring exposure remains elusive. In part, 
this dissonance is due to the challenges associated with collecting pedestrian data (FHWA 2016). 
For example, vulnerable road users traverse paths that are less confined than fixed lanes, take 
shortcuts off sidewalks in unmarked crossing locations, and often travel in closely spaced 
groups—making it difficult for sensors to differentiate among individuals within the group. 
Additionally, vulnerable road users are harder to detect at night than during the day. 

Advancements in sensing and data mining techniques—combined with high-performance 
computing resources—facilitated the development of several innovative approaches to detecting 
vulnerable road users in recent years. Researchers compared the benefits and drawbacks of 
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approaches that are both vehicle-based (e.g., on-board cameras, radar, global positioning system, 
accelerometers) and infrastructure-based (e.g., roadway cameras, light detection and ranging 
(LiDAR), radar, thermal imaging, ultrasonic, sensor fusion) (Reyes-Muñoz and 
Guerrero-Ibáñez 2022; Vargas et al. 2021). For example, time-to-collision or 
post-encroachment-time, in the context of vehicle-pedestrian conflicts, can be calculated from 
roadway cameras, which is a benefit (Ismail et al. 2009).  

On the other hand, video-based sensor performance can be compromised by lighting conditions, 
obstacles, and weather conditions (Lv et al. 2019). To overcome these performance limitations, 
researchers explored the use of other sensors for the detection of vulnerable road users and 
objects. Liu et al. (2021) proposed a thermal infrared pedestrian detection method for detecting 
and classifying motion-blurred, tiny, and dense objects. The researchers used infrared images 
collected through vehicle-mounted infrared thermal image detectors in complex scenarios on 
highways and roads. Results showed the proposed approach achieved a 72-percent accuracy 
score for detecting standing and walking pedestrians. 

Ansariyar and Jeihani (2023) installed LiDAR sensors at an intersection in Baltimore, MD, and 
evaluated the sensors’ capability, in conjunction with a machine-learning algorithm, to detect 
vehicle-bicycle conflicts while considering time of day, traffic signal phase, and weather 
conditions. Results showed this approach could detect vehicle-bicycle conflicts over several 
months, the severity of conflicts based on the speed and heading of the vehicle and bicycle, and 
conflict frequency at the intersection. Researchers observed more conflicts after 5 p.m. and 
determined the conflicts were more severe on sunny days than cloudy or rainy days. 

In another field study, researchers implemented LiDAR sensors at an intersection in Reno, NV to 
detect vehicle-pedestrian conflicts (Lv et al. 2019). Using a trajectory extraction analysis, Lv et 
al. determined that the proposed approach could identify vehicle-pedestrian near-crash events, 
but they noted some misidentifications due to inconsistencies in the distances between vehicles 
and pedestrians, vehicle speed, deceleration, and driver-reaction time. 

Other studies investigated detecting static pedestrians and animals using two-dimensional 
LiDAR, a red-green-blue camera, and a calibration technique that connected two sensors and an 
object-detection algorithm (Khaled et al. 2023). Additionally, Zhao et al (2019) studied 
predicting pedestrian crossing intentions by using pedestrian trajectories and walking behaviors. 
A recent field evaluation of smart city sensor deployment—including sensors mounted inside 
vehicles (e.g., forward collision warning) carried by the vulnerable road users (e.g., smartphones 
and smartwatches) and installed on infrastructure (e.g. video cameras, radar, LiDAR)—showed 
that potential pedestrian-vehicle conflicts could be detected prior to when the collision would be 
considered unavoidable (Teixeira et al. 2023). The level of detection accuracy depended on the 
sensor’s capability to track vehicle and pedestrian locations and compute data fusion. However, 
testing was conducted during the day and with one single walking pedestrian only. 

Most prior studies focused on the detection of pedestrians and bicyclists. Advanced detection 
systems must be able to detect different types of vulnerable road users, including scooter riders 
and wheelchair users. For example, the number of electronic scooter systems implemented in 
North American cities from 2020 to 2021 increased by 30 percent (North American Bikeshare 
and Scootershare Association 2022). As scooter activity increases, transportation agencies must 
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install systems that can accurately detect these types of vulnerable road users. Furthermore, in 
consideration of exposure to crash risk, including all individuals is important. If sensors cannot 
identify certain types of vulnerable road users, such as wheelchair users, the calculation of 
exposure would be misrepresented based on missing an entire subpopulation. 

In calculations of exposure to crash risk, pedestrians of all ages must also be considered. For 
example, studies have shown that child pedestrians are at higher risk of collision with motor 
vehicles than adults—especially at midblock crossings (Rothman et al. 2012). In 2022, 5 percent 
of all pedalcyclists killed and 15 percent of all pedalcyclists injured were children age 14 and 
younger (NCSA 2024a). Meanwhile, 2 percent of all pedestrians killed and 10 percent of all 
pedestrians injured were children 14 and younger (NCSA 2024b). Few studies to date have 
examined the ability of advanced detection systems to sense children and adults with equal 
accuracy—even though crash data on child pedestrians are available (NCSA 2023b; Rothman et 
al. 2012), 

To advance research into viable methods for improving vulnerable road user safety, FHWA 
developed a vulnerable road user technology test bed at Turner-Fairbank Highway Research 
Center (TFHRC) (FHWA n.d.). The test bed examines technologies and sensors that support 
pedestrian and bicyclist system concepts, standards, and applications and related product 
innovations (Jannat et al. 2021). FHWA installed nine infrared thermal imaging sensors in the 
test bed and calibrated the sensors to accurately detect vehicles, pedestrians, and bicyclists on the 
testbed.  

Additionally, the thermal and LiDAR sensors did not need light to detect various road users 
(Jannat et al. 2021). Better understanding the ability—and applicability—of these sensors under 
various conditions can potentially help State and local departments of transportation decide 
whether to implement sensors for safety initiatives or if count data from infrared thermal imaging 
sensors can calculate pedestrian exposure. 

https://highways.dot.gov/research/projects/enhancing-vulnerable-road-user-detection-and-volume-data-through-advanced-imaging
https://highways.dot.gov/research/projects/enhancing-vulnerable-road-user-detection-and-volume-data-through-advanced-imaging
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OBJECTIVES 

The purpose of this research was to evaluate the appropriateness and applicability of both 
infrared thermal imaging sensors and LiDAR sensors for collecting vulnerable road user count 
data—under variable conditions—that can provide information for measuring exposure to crash 
risk. The research team tested the infrared thermal imaging sensor’s ability to detect the 
following: 

• Single pedestrians in two scenarios for LiDAR and three scenarios for thermal: 
o Adult. 
o Heavily clothed pedestrian (thermal sensors only) 
o Child (as represented by a child pedestrian articulating dummy). 

• Multiple adult pedestrians. 
• Bicyclists. 
• Scooter users. 
• Wheelchair users. 

Testing occurred under different conditions, including light, dark, slow crossing, fast crossing, 
and crossing location. 
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CHAPTER 2. INFRARED THERMAL IMAGING SENSORS 

This study investigated the ability and applicability of infrared thermal imaging sensors to detect 
vulnerable road users and provide accurate vulnerable road user volumetric data. The research 
team selected seven different vulnerable road user types: a single pedestrian, a group of three 
pedestrians, a bicyclist, an electric scooter user, a wheelchair user, a child pedestrian, and a 
single pedestrian in heavy clothing. These vulnerable road user types were observed during the 
day in full daylight and at night under minimal lighting conditions. Additionally, the crossings of 
the vulnerable road users were assessed both at an intersection crossing and a midblock crossing. 
Finally, the vulnerable road users crossed at both slower and higher speeds based on vulnerable 
road user type. 

METHOD 

Apparatus 

The following subsections describe the technologies and testbed used and analyzed in this study. 

TFHRC Vulnerable Road User Technology Test Bed 

The research team conducted testing on the TFHRC vulnerable road user technology test bed. 
The test bed comprises two marked, signalized intersections with pedestrian crosswalks; signal 
heads and call buttons; and one marked midblock crossing along a two-lane, two-way, 
22-ft-wide road. 

Infrared Thermal Sensors 

The research team selected four thermal imaging sensors located on the TFHRC vulnerable road 
user technology test bed. Two of the sensors have a detection distance of 6–100 ft, with fields of 
view (FOVs) measuring 90° horizontally and 69° vertically. The other two sensors have 
detection distances ranging from 32–245 ft, with FOVs measuring 45° horizontally and 
35° vertically. All four infrared thermal imaging sensors are long-wave infrared (7–14 μm). They 
have capabilities for vehicle and bicycle presence detection, vehicle and bicycle counting, 
pedestrian counting, traffic data collection, and traffic flow monitoring. The sensors have three 
primary types of detection zones: vehicle, bicycle, and pedestrian. Detection zones are 
designated areas within a sensor’s FOV. The detection zones can be applied in the graphical user 
interface of the infrared thermal imaging sensor’s software. Detection zones outline an area 
meant to detect specific entities traversing through the zones. 

The sensors are designed to track and measure the size of any thermal signature they can see 
within their FOV based on the detection algorithm the OEM developed. When a thermal 
signature moves into a designated detection zone, the sensor determines whether the size of the 
thermal signature falls within the accepted size range for the type of detection zone being used 
(e.g., if set to a vehicle zone, a sensor would detect vehicles rather than bicyclists). When it 
detects, the sensor begins sending tracking data, which can then be recorded. Sensors transmit 
video, tracking, and count data across the network on which they are installed. Transmission of 
count data and thermal video data is continuous—regardless of whether a thermal signature is in 
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a detection zone—and the rate of transmission can be changed as needed. Every 10 s, the sensors 
transmit a message that includes the total number of thermal signatures detected in each zone 
during that 10-s period. A signature enters a detection zone and then is counted in the cycle after 
it leaves that zone. The output of the count data also includes a classifier of the entity being 
detected, based on the kind of detection zone used: vehicle, bicycle, or pedestrian. 

The research team defined pedestrian detection zones for all crosswalks within the FOV of the 
selected sensors when setting up the thermal sensors and used only data from the zones located at 
the selected crosswalks. For this study, the research team set the devices to the pedestrian 
detection zone setting—both because the pedestrian detection zone setting could detect 
pedestrians, bicyclists, and other vulnerable road user types (according to the user manual) and 
because the bicycle detection zone setting reportedly detects only bicycles and ignores all other 
cross traffic. The bicycle setting is primarily for use in designated bicycle areas on roadways. In 
addition, the user manual for the sensors and system noted that pedestrian sensors and bicycle 
sensors should not be used at the same location. 

The sensors were set up along Innovation Drive on the TFHRC campus, as shown in figure 1. 
Each sensor was set up to observe a primary crosswalk within the TFHRC test bed. Some of the 
sensors had multiple crosswalks in their FOVs; however, the ability to detect entities within 
secondary crosswalks outside each sensor’s primary crosswalk depended on the sensor’s 
placement angle and distance from the secondary crosswalks. Figure 1 shows the general 
locations and primary focal crosswalk of each sensor. Each focal crosswalk was located within 
the OEM-determined FOV and detection distance of its designated sensor. 

 
Original photo © 2023 Google® Earth™. Modified by FHWA (see Acknowledgments section). 
CCTV = closed-circuit television; DVR = digital video recorder. 

Figure 1. Photo. TFHRC test bed with infrared thermal imaging sensors, crosswalk, and 
CCTV DVR locations and distances. 
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Closed-Circuit Television (CCTV) Digital Video Recorders (DVRs) 

The research team used two traditional CCTV DVRs to record a live, high-resolution video feed 
in color during data collection. The CCTV DVRs were located 133 ft and 136 ft from the 
intersection and midblock crossings, respectively. The DVRs were zoomed in to clearly see 
vulnerable road user activity on the testing site. The video feed kept a record of the ground truth 
motion of vulnerable road users during testing. The video was then compared with the video 
output of the infrared thermal imaging sensors to verify the quality of the infrared thermal 
imaging sensor recording. 

Video Recording Software 

The research team used an open-source video recording software to record live video streams of 
both the infrared thermal imaging sensors and the CCTV DVRs used in this study. The output 
included specific placement of the detection zones, which lit up when the sensor detected an 
entity of the appropriate type. The research team used video data to manually code detections 
when the count data failed to save properly due to the research team’s prematurely ending the 
saved count feed, which occurred less than 3 percent of the time. 

Electric Scooter 

The study used a 350-W electric scooter with a 36-V, 15-Ampere-hour battery. The user manual 
lists the scooter’s top speed at 20 mph and load capacity as 220 lb. 

Wheelchair 

The study used a self-propelled wheelchair. The wheelchair was collapsible, had detachable leg 
rests, and had a load capacity of 300 lb. The leg rests were attached and used during testing. 

Bicycle 

The study used a 26-inch, manual-cruiser-style bicycle to represent bicyclists. 

Belt-Driven Articulating Pedestrian Dummy 

The research team used a programmable articulating pedestrian dummy to simulate a child 
vulnerable road user. The child pedestrian dummy is 45.5 inches tall, roughly the average height 
of a 6-yr-old child. Disposable heating pads were attached to the dummy to simulate the natural 
body heat of a human. The average temperature of the disposable heating pads is 140 ℉. Pilot 
testing revealed that applying disposable heating pads to all or selected parts of the dummy 
(chest, upper arms, upper legs, and back) enabled the infrared thermal sensors to identify the 
dummy as its own thermal signature and to successfully count the dummy as a pedestrian. 
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Experimental Design 

The research team reviewed existing literature and worked with the FHWA Office of Safety and 
Operations Research and Development Human Factors Team to identify factors needed to 
address the objectives for infrared thermal imaging sensors. Several unknowns appeared to exist 
regarding these sensors, such as whether wearing heavy, well-insulated clothing would inhibit 
the thermal sensors’ ability to accurately detect an individual and whether multiple signatures of 
body heat in high-population-density clusters crossing the street could make it difficult for 
infrared thermal imaging sensors to differentiate among multiple pedestrians crossing at the same 
time. Additionally, whether electric scooter users can be identified within the detection fields of 
infrared thermal imaging sensors similar to pedestrians and how differences in the speeds of 
various vulnerable road user types might affect thermal sensors’ ability to detect them. 

Figure 1 showed the location of the infrared thermal imaging sensors in the intersection. The 
research team selected crosswalks A and B as the primary crosswalks to test the sensors because 
of the A and B positions and the number of sensors that can see those crosswalks. Crosswalk A 
(midblock crossing) was on a vertical curve. For data collection, the team initially chose four 
infrared thermal imaging sensors located on the TFHRC campus but excluded the data from one 
sensor from the results due to technical issues. The sensors included C181, C182, C183, and 
C184. Table 1 lists the sensors that cover crosswalks A and B. C181 was excluded from figure 1 
because the data from C181 were not included in the results. 

Table 1. Infrared thermal imaging sensor crosswalk direction. 

Crosswalk Sensor Identification 
A C184 
B C181, C182, and 

C183 

Each infrared thermal imaging sensor is within the detection range, as defined by the OEM, of 
either the designated intersection or midblock crossing. 

The research team conducted pilot testing for the sensors and setup. During piloting, the team 
tested each condition level (i.e., the characteristics of each condition to be tested) of each factor 
at least twice to ensure no major issues with the thermal sensor setup or study design. During 
pilot testing, the team determined that the desired values for fast user conditions for bicyclists 
and scooter users could not be met due to the roadway geometry of the TFHRC vulnerable road 
user technology test bed. Therefore, the speeds for the fast condition for these user groups were 
adjusted to account for this geometry. (See the speed subsection for additional detail.) 

During pilot testing, the research team also identified the optimal configuration for the 
multiple-adult-pedestrian condition. Initially, the experiment anticipated having three pedestrians 
walk across the roadway in a straight line with about 1 inch of separation between them. During 
each of these pilot testing trials, however, the sensors failed to recognize the three 
shoulder-to-shoulder pedestrians. With the pedestrians in this formation, the thermal sensors 
never produced tracking data or any successful counts. 
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With the pedestrians in a two-and-one configuration (i.e., two side by side, followed by one adult 
pedestrian), the thermal sensors produced tracking data and count data but counted only two or 
one pedestrian in the detection zone. Therefore, the team chose the two-and-one configuration 
for this study because this configuration showed that the sensors were still active and working 
but that other potential limitations restricted the thermal sensors’ abilities and accuracy. The 
team also chose this configuration to replicate a more unorganized configuration, wherein 
multiple pedestrians might typically cross a crosswalk in the real world. The research team 
identified four key factors for the study: vulnerable road user type, speed, time of day, and 
location. Table 2 shows the condition levels for each factor. 

Table 2. Factors and condition levels. 

Factor Condition Level 
Vulnerable road user type Single adult pedestrian 

Heavily clothed pedestrian 
Child pedestrian dummy 
Wheelchair user 
Three adult pedestrians 
Bicyclist 
Scooter user 

Speed Slow 
Fast  

Time of day Day 
Night  

Location  Intersection 
Midblock 

Vulnerable Road User Type 

The research team chose seven vulnerable road user types to evaluate the infrared thermal 
imaging sensors’ ability to detect different vulnerable road users (table 2). El-Urfali et al. (2019) 
used the single-adult-pedestrian condition to test advanced detection technologies, and the single 
adult pedestrian condition served as a comparison point for the performance of the other 
vulnerable road user types. This study used the heavily clothed pedestrian level to determine 
whether the infrared thermal sensors could detect a pedestrian through the insulation of several 
layers of clothing. The heavily clothed pedestrian wore a shirt with a sweatshirt or light jacket, a 
heavy coat, gloves, a knit scarf, and a ski cap while crossing. The child pedestrian dummy 
simulated a child pedestrian, testing the sensors’ ability to detect vulnerable road users of 
different sizes. The advanced detection system was positioned so that the dummy could enter and 
leave the detection zone moving in one direction. The study used the condition with three adult 
pedestrians for determining the sensors’ ability to detect multiple entities crossing in a group. In 
addition to those four pedestrian types, the three other levels included an adult wheelchair user, 
an adult bicyclist, and an adult scooter user. The adult-wheelchair-user condition operated the 
wheelchair with the leg rests attached. 
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Speed 

The research team established two levels of speed—slow and fast—for each vulnerable road user 
type. Table 3 outlines the speeds chosen for each vulnerable road user type. The principal 
investigator validated the speed from the live-tracking data during data collection. 

Table 3. Fast and slow speeds for each vulnerable road user type.  

Vulnerable Road User Type Slow Speed (mph) Fast Speed (mph) 
Single adult pedestrian 2 5 
Three adult pedestrians 2 5 
Heavily clothed pedestrian 2 5 
Wheelchair user 2 5 
Child pedestrian dummy 2 5 
Bicyclist 5 10 
Scooter rider 5 10 

Time of Day 

The experiment used two levels—day and night—to test the sensors’ ability to detect vulnerable 
road users under normal daylight conditions and at night, when there is no ambient sunlight. The 
research team defined “day” as any time during the period from at least 1 h after sunrise to 1 h 
before sundown each day. The team defined “night” as any time during the period from at least 
1 h after sundown to 1 h before sunrise. The definitions meant that researchers conducted 
experiments during the day time-of-day level in full daylight and experiments during the night 
time-of-day level, when there was no light from the sun. Additionally, the research team 
collected ambient metadata, including weather (i.e., sunny, partly sunny, and cloudy), although 
researchers did not collect data during very cloudy or adverse weather. 

Location 

Two locations along the TFHRC vulnerable road user test bed were chosen for data collection: 
an intersection crosswalk and a midblock crosswalk. The intersection and midblock crossings 
can be seen in figure 1. 

System Performance Metrics 

This study’s performance measures were true detection accuracy (recall), system accuracy 
(precision), and F1 score—a type of F-score that measures accuracy by using precision and 
recall. Because both the recall and the precision of advanced detection technologies are 
important, the study can use an F1 score. An F1 score measures accuracy and incorporates the 
proportion of hits compared with all trials (including misses) and all detections (including false 
positives), weighing those two aspects of accuracy equally. 

Table 4 outlines the four potential outcomes for any single trial (i.e., detection or no detection) 
that occurred during data collection. Agencies use these potential outcomes to calculate the 
established performance metrics. True detection accuracy measures the thermal sensors’ ability 
to detect vulnerable road users while also accounting for misses; for example, the sensor receives 
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a true detection accuracy rate of 50 percent if the sensor makes 5 successful detections out of 
10 possible detections. System accuracy measures the thermal sensors’ ability to detect only 
vulnerable road users and exclude nonvulnerable road users and false detections; for example, if 
a sensor makes a total of 10 detections but only 8 are accurate detections of actual vulnerable 
road users, leaving 2 false detections, the system accuracy rate is 80 percent. 

Table 4. Outcomes for a single trial of data collection.  

Vulnerable Road User Crossing Sensor Output Outcome 
Crossing Detection Hit 
Crossing No detection Miss 
No crossing Detection False detection 
No crossing No detection Correct rejection 

The research team used true detection accuracy as a measure to determine the abilities of the 
sensors. The team used system accuracy in conjunction with true detection accuracy to calculate 
an F1 score. The team used the F1 score to assess the applicability of the thermal sensors for 
detecting vulnerable road users. The applicability of the sensors is based on sensor ability to 
detect vulnerable road users and on their ability to minimize false detections. 

Figure 2 through figure 4 show equations for the chosen performance metrics. 

  
Figure 2. Equation. True detection accuracy. 

 
Figure 3. Equation. System accuracy. 

 
Figure 4. Equation. F1 score. 

The research team set the minimal acceptable F1 score for vulnerable road user detection as 0.85. 
Based on the work of El-Urfali et al. (2019), the team set the minimal acceptable F1 score as 
0.85 and the minimal acceptable true detection accuracy as 85 percent. Any scores below those 
scores resulted in unacceptable performances (table 5). 

Table 5. F1 score and true detection accuracy thresholds.  

F1 Score 
True Detection Accuracy 

(percent) Rating 
≥0.85 ≥85 Acceptable performance 
≤0.84 ≤84 Unacceptable performance 
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The research team reviewed and analyzed the data to determine the infrared thermal imaging 
sensor’s ability to detect pedestrians, bicyclists, and the other vulnerable road users at the 
intersection and marked midblock crossing at TFHRC in different conditions (e.g., light and 
dark, slow and fast crossings, congestion, heavy clothing). Based on a power analysis with a 
95-percent confidence interval (±5 percent), the team tested each combination of the chosen 
factors six times each. Six trials for each of the 56 conditions, with 2 sensors at the intersection 
location and 1 at the midblock, resulted in a total of 504 observations. Collapsing the data across 
the various factors resulted in 72 observations for each level of vulnerable road user type, 252 
observations for each level of speed, 252 observations for each level of time of day, 
336 observations for the intersection level of location, and 168 observations for the midblock 
level of location. 

The team executed a single crossing in each trial based on the parameters of the condition being 
examined, resulting in a single data point per sensor per trial. The data point then had a count of 
the total number of vulnerable road users the thermal sensors detected, enabling the research 
team to identify both misses and false detections. 

Data collection occurred over 3 mo. Members of the research team acted as the adult vulnerable 
road users by moving through a designated intersection crosswalk and a midblock crosswalk. 
The team recorded count, thermal video, and DVR data during each trial. In addition, the team 
recorded ambient metadata—including ambient temperature, weather conditions (i.e., sunny, 
partly sunny, and cloudy), and wind speed—during data collection. 

RESULTS 

The research team calculated true detection accuracy, system accuracy, and F1 scores from the 
count data collected for each combination of factors and compared the data across the levels of 
each factor. The team used data from sensors C182, C183, and C184, All the intersection 
conditions included data from sensors C182 and C183; meanwhile, all the midblock conditions 
included data from sensor C184. 

The research team could not assess the true detection accuracy and system accuracy of C181’s 
count data because the count data from the sensors had not been recorded properly. Crossing B 
was on the fringes of the FOV for C181, and the detection zone went right to the edge of the 
sensor’s FOV. As a result, the sensor could not detect when the vulnerable road user left the end 
of the detection zone, and the sensor aggregated no count data. Therefore, the team excluded all 
trials involving sensor C181 from this analysis. However, the team determined that C181 can 
detect vulnerable road users in all the scenarios because C181 still collected tracking data. 

Table 6 shows the total number of vulnerable road user crossings, the total number of detections 
made by the sensors, the total number of times a sensors failed to successfully detect a 
vulnerable road user crossing, and the total number of times a sensor successfully detected a 
vulnerable road user crossing for each combination of factors. Using the count data, the research 
team calculated true detection accuracy, system accuracy, and F1 scores for each thermal sensor 
condition. Additionally, the team aggregated total crossings, detections, misses, and hits across 
all 56 conditions and calculated total true detection accuracy, system accuracy, and F1 score for 
the infrared thermal sensors.
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Table 6. Infrared thermal imaging sensor outcomes and performance metrics by condition.  

Vulnerable Road User Type Location 
Mode of 
Travel 

Time of 
Day 

Total 
Crossings 

Total 
Detections 

Total 
Misses 

Total 
Hits 

True 
Detection 
Accuracy 
(percent) 

System 
Accuracy 
(percent) 

F1 
Score 

Single adult pedestrian Intersection Fast Day 12 11 3 9 75 82 0.78 
Single adult pedestrian Intersection Fast Night 12 12 0 12 100 100 1.00 
Single adult pedestrian Intersection Slow Day 12 13 1 11 92 85 0.88 
Single adult pedestrian Intersection Slow Night 11 11 0 11 100 100 1.00 
Single adult pedestrian Midblock Fast Day 6 3 3 3 50 100 0.67 
Single adult pedestrian Midblock Fast Night 6 6 0 6 100 100 1.00 
Single adult pedestrian Midblock Slow Day 6 4 2 4 67 100 0.80 
Single adult pedestrian Midblock Slow Night 6 6 0 6 100 100 1.00 
Heavily clothed pedestrian Intersection Fast Day 12 14 0 12 100 86 0.92 
Heavily clothed pedestrian Intersection Fast Night 12 12 0 12 100 100 1.00 
Heavily clothed pedestrian Intersection Slow Day 12 12 0 12 100 100 1.00 
Heavily clothed pedestrian Intersection Slow Night 12 13 0 12 100 92 0.96 
Heavily clothed pedestrian Midblock Fast Day 6 5 1 5 83 100 0.91 
Heavily clothed pedestrian Midblock Fast Night 6 6 0 6 100 100 1.00 
Heavily clothed pedestrian Midblock Slow Day 6 7 0 6 100 86 0.92 
Heavily clothed pedestrian Midblock Slow Night 6 6 0 6 100 100 1.00 
Child pedestrian dummy Intersection Fast Day 12 12 1 11 92 92 0.92 
Child pedestrian dummy Intersection Fast Night 12 12 0 12 100 100 1.00 
Child pedestrian dummy Intersection Slow Day 12 12 0 12 100 100 1.00 
Child pedestrian dummy Intersection Slow Night 12 12 0 12 100 100 1.00 
Child pedestrian dummy Midblock Fast Day 6 6 0 6 100 100 1.00 
Child pedestrian dummy Midblock Fast Night 6 6 0 6 100 100 1.00 
Child pedestrian dummy Midblock Slow Day 6 6 0 6 100 100 1.00 
Child pedestrian dummy Midblock Slow Night 6 6 0 6 100 100 1.00 
Wheelchair user Intersection Fast Day 12 12 0 12 100 100 1.00 
Wheelchair user Intersection Fast Night 12 12 0 12 100 100 1.00 
Wheelchair user Intersection Slow Day 12 11 1 11 92 100 0.96 
Wheelchair user Intersection Slow Night 12 12 0 12 100 100 1.00 
Wheelchair user Midblock Fast Day 6 5 1 5 83 100 0.91 
Wheelchair user Midblock Fast Night 6 6 0 6 100 100 1.00 
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Vulnerable Road User Type Location 
Mode of 
Travel 

Time of 
Day 

Total 
Crossings 

Total 
Detections 

Total 
Misses 

Total 
Hits 

True 
Detection 
Accuracy 
(percent) 

System 
Accuracy 
(percent) 

F1 
Score 

Wheelchair user Midblock Slow Day 6 6 0 6 100 100 1.00 
Wheelchair user Midblock Slow Night 6 6 0 6 100 100 1.00 
Three adult pedestrians Intersection Fast Day 36 18 18 18 50 100 0.67 
Three adult pedestrians Intersection Fast Night 36 11 25 11 31 100 0.47 
Three adult pedestrians Intersection Slow Day 36 17 19 17 47 100 0.64 
Three adult pedestrians Intersection Slow Night 36 13 23 13 36 100 0.53 
Three adult pedestrians Midblock Fast Day 18 11 7 11 61 100 0.76 
Three adult pedestrians Midblock Fast Night 18 12 6 12 67 100 0.80 
Three adult pedestrians Midblock Slow Day 18 8 10 8 44 100 0.62 
Three adult pedestrians Midblock Slow Night 18 12 6 12 67 100 0.80 
Bicyclist Intersection Fast Day 12 12 0 12 100 100 1.00 
Bicyclist Intersection Fast Night 10 10 0 10 100 100 1.00 
Bicyclist Intersection Slow Day 12 12 0 12 100 100 1.00 
Bicyclist Intersection Slow Night 12 12 0 12 100 100 1.00 
Bicyclist Midblock Fast Day 6 6 0 6 100 100 1.00 
Bicyclist Midblock Fast Night 6 6 0 6 100 100 1.00 
Bicyclist Midblock Slow Day 6 5 1 5 83 100 0.91 
Bicyclist Midblock Slow Night 6 6 0 6 100 100 1.00 
Scooter user Intersection Fast Day 12 13 0 12 100 92 0.96 
Scooter user Intersection Fast Night 10 9 1 9 90 100 0.95 
Scooter user Intersection Slow Day 12 13 0 12 100 92 0.96 
Scooter user Intersection Slow Night 10 10 0 10 100 100 1.00 
Scooter user Midblock Fast Day 6 6 0 6 100 100 1.00 
Scooter user Midblock Fast Night 6 6 0 6 100 100 1.00 
Scooter user Midblock Slow Day 6 6 0 6 100 100 1.00 
Scooter user Midblock Slow Night 6 6 0 6 100 100 1.00 
  Total — — — 641 523 129 512 79.88 97.90 0.88 

—Not applicable.



15 

The overall F1 score for the infrared thermal imaging sensors was 0.88 (acceptable). The 
majority of the conditions had F1 scores greater than 0.85. However, the three-adult-pedestrian 
conditions and most of the conditions with a single adult pedestrian during the day had 
unacceptable F1 scores. 

The team then evaluated each factor independently of the other factors. Table 7 shows the 
performance metrics for each vulnerable-road-user condition in study 1, which evaluated the 
ability and applicability of infrared thermal imaging sensors. 

Table 7. Performance of thermal sensors during study 1 for each vulnerable road user type. 

Vulnerable Road User Type 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Single adult pedestrian 87.32 93.94 0.905 
Heavily clothed pedestrian 98.61 94.67 0.966 
Child pedestrian dummy 98.61 98.61 0.986 
Wheelchair user 97.22 100.00 0.986 
Three adult pedestrians 47.22 100.00 0.642 
Bicyclist 98.57 100.00 0.993 
Scooter user 98.53 97.10 0.978 

Table 8 shows the performance of the thermal sensor at slow and fast speeds. Table 9 shows the 

performance of the thermal sensor at slow and fast speeds but excludes the three-adult-pedestrian 
conditions. 

Table 8. Performance of thermal sensors during study 1 at slow and fast speeds. 

Speed 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Slow 80.37 98.10 0.884 
Fast 79.38 97.69 0.876 

Table 9. Performance of thermal sensors during study 1 at slow and fast speeds without the 
three-adult-pedestrian conditions. 

Speed 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Slow 97.65 97.65 0.977 
Fast 95.28 97.12 0.962 
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Table 10 shows the performance of the thermal sensors during the day and at night. Table 11 
shows the performance of the thermal sensors during the day and night but excludes the 
three-adult-pedestrian conditions. 

Table 10. Performance of thermal sensors during study 1 during the day and night. 

Time of Day 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Day 79.01 96.24 0.868 
Night 80.76 99.61 0.892 

Table 11. Performance metrics of thermal sensors during study 1 during the day and night 
without the three-adult-pedestrian conditions. 

Time of Day 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Day 93.52 95.28 0.944 
Night 99.52 99.52 0.995 

Table 12 shows the performance of the thermal sensors at an intersection and at midblock. 
Table 13 shows the performance of the thermal sensors at an intersection and at midblock but 
excludes the three-adult-pedestrian conditions. 

Table 12. Performance of thermal sensors during study 1 at an intersection and at 
midblock. 

Location 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Intersection 78.35 97.08 0.867 
Midblock 82.87 99.44 0.904 

Table 13. Performance of thermal sensors during study 1 at an intersection and at 
midblock without the three-adult-pedestrian conditions. 

Location 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Intersection 97.51 96.48 0.970 
Midblock 94.44 99.27 0.968 
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CHAPTER 3. LIDAR SENSORS 

This study investigated the ability and applicability of LiDAR sensors to provide accurate 
vulnerable road user volumetric data. The research team selected six different vulnerable road 
user types: a single pedestrian, a group of three pedestrians, a bicyclist, an electric scooter user, 
an electric wheelchair user, and a child pedestrian. The team observed these vulnerable road user 
types during the day in full daylight and at night under minimal lighting conditions. Additionally, 
the team assessed the vulnerable road user crossings at both an intersection crossing and a 
midblock crossing. Finally, the vulnerable road users crossed at both slow and high speeds for 
their types. 

METHOD 

Apparatus 

The following 10 sections describe the technologies the research team used to conduct this study. 

TFHRC Vulnerable Road User Technology Test Bed 

The research team conducted testing on the TFHRC vulnerable road user technology test bed. 
The test bed comprises two marked, signalized intersections with pedestrian crosswalks; signal 
heads and call buttons; and one marked midblock crossing along a two-lane, two-way, 
22-ft-wide road. 

LiDAR Sensor 

The research team selected one 32-channel LiDAR sensor located on the TFHRC vulnerable 
road user technology test bed intersection. This sensor had a measurement range of 650 ft, a 
range accuracy of ±3 cm, a 360° horizontal FOV, a 40° vertical FOV, and a frame rate of 
5-20 Hz. The sensor had pedestrian and vehicle presence detection capabilities, vehicle and 
pedestrian counting, traffic data collection, traffic flow monitoring, and out-of-crosswalk 
occurrence detection. The research team set the sensor to detect and track the movements of 
pedestrians within its FOV. 

The research team used proprietary software from the LiDAR sensor manufacturer to process 
and save the LiDAR sensor data and determine successful detection and counts. The software 
allowed for multimodal count data per a customizable counting zone definition. The research 
team visualized count data from specific locations and detection zones during designated periods 
using this software. The research team used these count data to verify detection of vulnerable 
road users and count data accuracy. 

The sensor was set up along Innovation Drive, as shown in figure 5, which demonstrates the 
general locations of each sensor. The sensor was set up to observe both the intersection 
crosswalk and the midblock crosswalk within the TFHRC test bed. Each crosswalk was located 
within the OEM-determined FOV and detection distance of the sensor. 
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Original photo © 2023 Google® Earth™. Modified by FHWA (see Acknowledgments section). 

Figure 5. Photo. Satellite image of TFHRC pedestrian technology test bed and location of 
LiDAR and thermal sensors. 

LiDAR Sensor Roadside Data Processing Unit and Data Analytics Software 

The research team processed the raw LiDAR data through a roadside data processing unit. The 
unit was installed at the intersection near the sensor and consisted of a 512-core graphics 
processing unit with 64 tensor cores; an 8-core, 64-bit central processing unit; and 32 gigabytes 
of 256-bit random access memory. The sensor was housed in milled aluminum housing. The 
roadside data processing unit allowed for edge-based computing, which enabled real-time data 
processing with the vendor’s proprietary software license.  

The proprietary data analytics software had several functionalities. The system aggregated count 
data for roadway agent detections every 15 minutes. To get and count individual crossings, the 
research team set the out-of-crosswalk event detection to include the crosswalk. From this 
process, the team was able to record and manually aggregate crosswalk crossings in the regions 
of interest. 

CCTV DVRs 

The research team used two traditional CCTV DVRs to record a live, high-resolution video feed 
in color during data collection. The CCTV DVRs were located 133 ft and 136 ft from the 
intersection and midblock crossings, respectively. The DVRs were zoomed in to clearly see 
vulnerable road user activity on the testing site. The video feed kept a record of the ground truth 
motion of vulnerable road users during testing. The video was then compared with the aggregate 
count output of the LiDAR sensors to verify the quality of the LiDAR sensor recording. 

Video Recording Software 

The research team used open-source video recording software coded to record data during trial 
runs of the CCTV DVRs. The team manually coded detections from video data when count data 
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failed to save properly, which happened in less than 3 percent of cases due to prematurely ending 
the saved count feed. 

Electric Scooter 

The study used a 350-W electric scooter with a 36-V, 15-Ah battery. Manufacturer 
documentation lists the scooter’s top speed at 20 mph and load capacity as 220 lb. 

Wheelchair 

The study used an electric wheelchair with a 12-V battery. Manufacturer documentation lists the 
wheelchair’s top speed at 4 mph and load capacity as 700 lb. The leg rests were attached and 
used during testing. 

Bicycle 

A research team member rode a 26-inch manual cruiser bicycle to represent bicyclists. 

Belt-Driven Articulating Pedestrian Dummy 

The team used a programmable articulating pedestrian dummy to simulate a child-size 
vulnerable road user. The child-size pedestrian dummy is 45.5 inches tall, roughly the average 
height of a 6-yr-old male child (Kuczmarski et al. 2000). 

Vulnerable Road Users 

The single adult pedestrian; the three adult pedestrians; and the operators of the wheelchair, 
scooter, and bicycle were members of the research team. The agents acting as these vulnerable 
road user types were a mix of males and females of various age ranges and races. 

Experimental Design 

Several unknowns regarding these sensors included their capabilities for midblock detection, 
differentiation, and identification of closely clustered pedestrians and their performance in 
adverse weather conditions. The selected LiDAR sensor was within the detection range defined 
by the OEM for either the designated intersection or the midblock crossing. 

The research team conducted pilot testing for the sensors and setup. During piloting, the team 
tested each condition level of each factor at least twice to ensure no major issues with the LiDAR 
sensor setup or study design. The research team identified four key factors for the study: 
vulnerable road user type, speed, time of day, and location. Table 14 shows the condition levels 
for each factor. Study 1 established the specific values of each level of each factor to evaluate the 
ability of thermal imaging sensors (FHWA 2024). The only change for this aspect of the current 
study was using an electric wheelchair instead of a manual wheelchair and the exclusion of the 
heavy clothing condition. 
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Table 14. Factors and condition levels. 

Factor Condition Level 
Vulnerable road user type Single adult pedestrian 

Child-size pedestrian dummy 
Wheelchair user 
Three adult pedestrians 
Bicyclist 
Scooter user 

Speed Slow 
Fast  

Time of day Day 
Night  

Location  Intersection 
Midblock 

Vulnerable Road User Type 

The research team chose six vulnerable road user types to evaluate the LiDAR sensors’ ability to 
detect different vulnerable road users (table 14). Similar to study 1, the single-adult-pedestrian 
condition served as a comparison point for the performance of the other vulnerable road user 
types. The child pedestrian dummy simulated a child pedestrian, testing the LiDAR sensors’ 
ability to detect vulnerable road users of different sizes. The advanced detection system was 
positioned so that the dummy could enter and leave the detection zone moving in one direction. 
The study used the condition with three adult pedestrians for determining the sensors’ ability to 
detect multiple entities crossing in a group. In addition to those four pedestrian types, the three 
other levels included an adult wheelchair user, an adult bicyclist, and an adult scooter user. The 
adult-wheelchair-user condition operated a motorized electric wheelchair. 

Speed 

The research team established two levels of speed—slow and fast—for each vulnerable road user 
type. Table 15 outlines the speeds chosen for each vulnerable road user type. The principal 
investigator validated the speed from the live-tracking data during data collection. 

Table 15. Fast and slow speeds for each vulnerable road user type.  

Vulnerable Road User Type Slow Speed (mph) Fast Speed (mph) 
Single adult pedestrian 2 5 
Three adult pedestrians 2 5 
Wheelchair user 2 5 
Child-size pedestrian dummy 2 5 
Bicyclist 5 10 
Scooter user 5 10 
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Time of Day 

The experiment used two levels—day and night—to test the sensors’ ability to detect vulnerable 
road users under normal daylight conditions and at night when no ambient light existed. The 
research team defined day as any time during the period from at least 1 h after sunrise to 1 h 
before sundown of each day. The team defined night as any time during the period from at least 
1 h after sundown to 1 h before sunrise. The definitions meant that researchers conducted 
experiments during the day time-of-day level in full daylight and experiments during the night 
time-of-day level when there was no light from the sun. Additionally, the research team collected 
ambient metadata, including weather (i.e., sunny, partly sunny, cloudy), although researchers did 
not collect data during very cloudy or adverse weather. 

Location 

The intersection and midblock crossings (figure 5) were chosen for data collection. These 
locations allowed road closing during testing to ensure team members’ safety. 

System Performance Metrics  

The research team tested each of the 48 conditions 8 times. The team made a total of 384 
observations. When collapsing the data across all factors except for vulnerable road user types, 
which had the largest number of levels, the total number of observations for each level was 64—
an acceptable number of observations for a 95-percent confidence level (±5 percent). The total 
number of observations for the levels of the other factors was 192, an acceptable number of 
observations for a 95-percent confidence level (±5 percent). 

This study’s performance measures were true detection accuracy (recall), system accuracy 
(precision), and F1 score—a type of F score that measures accuracy by using precision and 
recall. Because both the recall and the precision of advanced detection technologies are 
important, an F1 score can be used. An F1 score measures accuracy and incorporates the 
proportion of hits compared with all trials (including misses) and all detections (including false 
positives), weighing those two aspects of accuracy equally. 

Table 16 lists the four potential outcomes for any single trial (i.e., detection or no detection) that 
occurred during data collection. Agencies use these potential outcomes to calculate the 
established performance metrics. True detection accuracy measures the LiDAR sensors’ ability 
to detect vulnerable road users while also accounting for misses. For example, if the sensor 
makes 5 successful detections out of 10 possible correct detections, the true detection accuracy 
rate is 50 percent. System accuracy measures the LiDAR sensors’ ability to detect only 
vulnerable road users and exclude nonvulnerable road users and false detections. For example, if 
the sensor makes a total of 10 detections but only 8 were accurate detections of actual vulnerable 
road users (i.e., 2 false detections), the system accuracy rate is 80 percent. 
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Table 16. Potential outcomes for a single trial of data collection.  

Vulnerable Road User Crossing Sensor Output Outcome 
Crossing Detection Hit 
Crossing No detection Miss 
No crossing Detection False detection 
No crossing No detection Correct rejection 

The research team used true detection accuracy as a measure to determine the abilities of the 
sensors. The team used system accuracy in conjunction with true detection accuracy to calculate 
an F1 score. The team used the F1 score to assess the applicability of the LiDAR sensors for 
detecting vulnerable road users. Applicability of the sensors is based on their ability to not only 
detect vulnerable road users but also to minimize false detections. 

Figure 6 through figure 8 show equations for the chosen performance metrics. 

 
Figure 6. Equation. True detection accuracy. 

 
Figure 7. Equation. System accuracy. 

 
Figure 8. Equation. F1 score. 

The higher the value of true detection accuracy, the more likely the system can detect vulnerable 
road users when a vulnerable road user is truly present. Based on El-Urfali et al. (2019), the team 
set the minimum acceptable F1 score as 0.85 and the minimum acceptable true detection 
accuracy as 85 percent. Any scores less than those scores resulted in unacceptable performance 
(table 17). 

Table 17. True detection accuracy thresholds.  

F1 Score 
True Detection Accuracy 

(percent) Rating 
≥0.85 ≥85 Acceptable performance 
≤0.84 ≤84 Unacceptable performance 
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DATA ANALYSIS AND RESULTS 

The research team calculated true detection accuracy, system accuracy, and F1 scores from the 
count data collected for each combination of factors and compared the data across the levels of 
each factor. The team used data from sensor C284 to collect all the intersection and midblock 
conditions. Table 18 shows the total number of vulnerable road user crossings (total number of 
hits and misses), total detections (hits and false positives), total number of misses, and total 
number of hits for each combination of factors. Using the count data, the research team 
calculated true detection accuracy, system accuracy, and F1 scores for each condition of the 
LiDAR sensors. The team aggregated total crossings, detections, misses, and hits across all 
56 conditions and calculated total true detection accuracy, system accuracy, and F1 score for the 
LiDAR sensors. Some values under system accuracy and F1 score are listed as not applicable 
because these trials had no hits or false positives, thus resulting in 0 being divided by 0, a 
nonapplicable value.
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Table 18. LiDAR sensor outcomes and performance metrics by condition.  

Vulnerable Road User 
Type Location 

Mode of 
Travel 

Time of 
Day 

Total 
Crossings 

Total 
Detections 

Total 
Misses 

Total 
Hits 

True 
Detection 
Accuracy 
(percent) 

System 
Accuracy 
(percent) 

F1 
Score 

Single adult pedestrian Intersection Fast Day 8 8 0 8 100 100 1.00 

Single adult pedestrian Intersection Fast Night 8 8 0 8 100 100 1.00 

Single adult pedestrian Intersection Slow Day 8 8 0 8 100 100 1.00 

Single adult pedestrian Intersection Slow Night 8 8 0 8 100 100 1.00 

Single adult pedestrian Midblock Fast Day 8 8 0 8 100 100 1.00 

Single adult pedestrian Midblock Fast Night 8 8 0 8 100 100 1.00 

Single adult pedestrian Midblock Slow Day 8 8 0 8 100 100 1.00 

Single adult pedestrian Midblock Slow Night 8 8 0 8 100 100 1.00 

Child pedestrian dummy Intersection Fast Day 8 0 8 0 0 — — 

Child pedestrian dummy Intersection Fast Night 8 0 8 0 0 — — 

Child pedestrian dummy Intersection Slow Day 8 0 8 0 0 — — 

Child pedestrian dummy Intersection Slow Night 8 0 8 0 0 — — 

Child pedestrian dummy Midblock Fast Day 8 0 8 0 0 — — 

Child pedestrian dummy Midblock Fast Night 8 0 8 0 0 — — 

Child pedestrian dummy Midblock Slow Day 8 0 8 0 0 — — 

Child pedestrian dummy Midblock Slow Night 8 0 8 0 0 — — 

Wheelchair user Intersection Fast Day 8 5 3 5 62 100 0.77 

Wheelchair user Intersection Fast Night 8 7 1 7 88 100 0.93 

Wheelchair user Intersection Slow Day 8 0 8 0 0 — — 
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Vulnerable Road User 
Type Location 

Mode of 
Travel 

Time of 
Day 

Total 
Crossings 

Total 
Detections 

Total 
Misses 

Total 
Hits 

True 
Detection 
Accuracy 
(percent) 

System 
Accuracy 
(percent) 

F1 
Score 

Wheelchair user Intersection Slow Night 8 0 8 0 0 — — 

Wheelchair user Midblock Fast Day 8 7 1 7 88 100 0.93 

Wheelchair user Midblock Fast Night 8 7 1 7 88 100 0.93 

Wheelchair user Midblock Slow Day 8 8 0 8 100 100 1.00 

Wheelchair user Midblock Slow Night 8 8 0 8 100 100 1.00 

Three adult pedestrians Intersection Fast Day 24 8 16 8 33 100 0.50 

Three adult pedestrians Intersection Fast Night 24 5 19 5 21 100 0.34 

Three adult pedestrians Intersection Slow Day 24 8 16 17 33 100 0.50 

Three adult pedestrians Intersection Slow Night 24 6 18 6 25 100 0.40 

Three adult pedestrians Midblock Fast Day 24 9 15 9 38 100 0.55 

Three adult pedestrians Midblock Fast Night 24 8 16 8 33 100 0.50 

Three adult pedestrians Midblock Slow Day 24 12 12 12 50 100 0.67 

Three adult pedestrians Midblock Slow Night 24 7 17 7 29 100 0.45 

Bicyclist Intersection Fast Day 8 1 7 1 12 100 0.22 

Bicyclist Intersection Fast Night 8 0 8 0 — — — 

Bicyclist Intersection Slow Day 8 6 2 6 75 100 0.86 

Bicyclist Intersection Slow Night 8 6 2 6 75 100 0.86 

Bicyclist Midblock Fast Day 8 6 2 6 75 100 0.86 

Bicyclist Midblock Fast Night 8 5 3 5 62 100 0.77 

Bicyclist Midblock Slow Day 8 7 1 7 88 100 0.93 
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Vulnerable Road User 
Type Location 

Mode of 
Travel 

Time of 
Day 

Total 
Crossings 

Total 
Detections 

Total 
Misses 

Total 
Hits 

True 
Detection 
Accuracy 
(percent) 

System 
Accuracy 
(percent) 

F1 
Score 

Bicyclist Midblock Slow Night 8 6 2 6 75 100 0.86 

Scooter user Intersection Fast Day 8 2 6 2 25 100 0.40 

Scooter user Intersection Fast Night 8 0 8 0 — — — 

Scooter user Intersection Slow Day 8 4 4 4 50 100 0.67 

Scooter user Intersection Slow Night 8 8 0 8 100 100 1.00 

Scooter user Midblock Fast Day 8 0 8 0 — — — 

Scooter user Midblock Fast Night 8 0 8 0 — — — 

Scooter user Midblock Slow Day 8 7 1 7 88 100 0.93 

Scooter user Midblock Slow Night 8 6 2 6 75 100 0.86 

—Not applicable.
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Study 2 evaluated LiDAR sensors in isolation and subsequently compared the two sensor types. 
The overall true detection accuracy for the LiDAR sensors was 79.88 percent, suggesting overall 
unacceptable performance (i.e., less than 85 percent). Most of the conditions had true detection 
accuracy less than 85 percent. However, the single adult pedestrian had 100-percent true 
detection accuracy under all conditions. The team evaluated each factor independently of the 
other factors. Table 19 shows the performance metrics of the LiDAR sensors for each vulnerable 
road user condition. 

Table 19. Performance of LiDAR sensors across vulnerable road user types. 

Vulnerable Road User Type 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Single adult pedestrian 100 100 1.00 
Child pedestrian dummy 0 — — 
Wheelchair user 66 100 0.79 
Three adult pedestrians 33 100 0.49 
Bicyclist 57.9 100 0.73 
Scooter user 42 100 0.59 
Overall 79.88 100 0.89 

—Not applicable. 

Table 20 shows the performance of the LiDAR sensor at slow and fast speeds. Table 21 shows 
the performance of the LiDAR sensor at slow and fast speeds, excluding the 
three-adult-pedestrian conditions. 

Table 20. Performance of LiDAR sensors at slow and fast speeds. 

Speed 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Slow 51 100 0.68 
Fast 40 100 0.57 

Table 21. Performance of LiDAR sensors at slow and fast speeds (excluding 
three-adult-pedestrian condition). 

Speed 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Slow 61 100 0.76 
Fast 45 100 0.62 
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Table 22 shows the performance of the LiDAR sensors during the day and night conditions. 
Table 23 shows the performance of the LiDAR sensors during the day and night, excluding the 
three-adult-pedestrian conditions. 

Table 22. Performance of LiDAR sensors during day and night. 

Time of Day 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Day 48 100 0.65 
Night 43 100 0.60 

Table 23. Performance metrics of LiDAR sensors during day and night (excluding the 
three-adult-pedestrian condition). 

Time of Day 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Day 53 100 0.69 
Night 53 100 0.69 

Table 24 shows the performance of the LiDAR sensors at an intersection and at midblock. 
Table 25 shows the performance of the LiDAR sensors at an intersection and at midblock, 
excluding the three-adult-pedestrian conditions. 

Table 24. Performance of LiDAR sensors at an intersection and at midblock. 

Location 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Intersection 38 100 0.55 
Midblock 53 100 0.69 

Table 25. Performance of LiDAR sensors at an intersection and at midblock (excluding 
three-adult-pedestrian condition). 

Location 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Intersection 44 100 0.61 
Midblock 62 100 0.76 
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CHAPTER 4. GENERAL DISCUSSION AND SENSOR COMPARISON 

In the first study, which investigated the infrared thermal sensors, researchers found that infrared 
thermal imaging sensors have many advantages for vulnerable road user detection. These sensors 
were able to detect different vulnerable road user types (pedestrians, bicyclists, scooter users, and 
wheelchair users), vulnerable road users traveling at fast and slow speeds, vulnerable road users 
during the day and at night, and vulnerable road users at both intersections and midblock 
crossings. One of the greatest advantages of the infrared thermal imaging sensors is their ability 
to detect vulnerable road users at night, when visibility is poor. These sensors were unable to 
differentiate between and categorize the different vulnerable road users but could potentially 
improve overall count data for individual vulnerable road users on roadways, serving to better 
measure vulnerable road user exposure to crash risk. 

Another major disadvantage of the thermal sensors was their inability to detect three pedestrians 
crossing in a closely clustered triangular formation. The inability of the sensors to successfully 
detect multiple, closely clustered vulnerable road users can potentially lead to lower overall 
counts of vulnerable road users and make exposure to crash risk seem higher than it actually is. 
Considering that FHWA’s (2016) Traffic Monitoring Guide states that pedestrians often cross 
roadways in closely spaced groups, that inability is a significant disadvantage. 

In the second study, which included assessing the ability of LiDAR sensors, researchers found 
the LiDAR sensors, when used in conjunction with the roadside data processing unit and 
analytics software, had both advantages and disadvantages in detecting vulnerable road users. 
Specifically, the LiDAR sensors were able to detect the single adult pedestrian type very well. 
However, other vulnerable road user types were either not detected at all (e.g., child pedestrian 
dummy) or only detected sometimes. Whether the vulnerable road users were crossing during the 
day or at night did not make a difference in the detection outcome, as no consistent patterns were 
observed—suggesting that the sensors work equally well during the day and night. However, the 
sensors displayed differences in their abilities to detect certain vulnerable road user types. The 
inability of these sensors to differentiate between pedestrians, bicyclists, scooter users, and 
wheelchair users was a disadvantage. 

The detection algorithm and the data libraries need further development so that sensors not only 
detect but also define the different types of vulnerable road users. However, the sensors have the 
potential to improve overall count data for individual vulnerable road users on the roadways, 
which can potentially serve to better measure vulnerable road user exposure to crash risk. The 
sensors could not accurately detect three pedestrians crossing in a closely clustered triangular 
formation, and this inability can potentially lead to lower overall counts of vulnerable road users 
and makes crash risk exposure seem higher than it is. Because pedestrians often cross roadways 
in closely spaced groups, this inability is a major disadvantage (FHWA 2016). 

During the LiDAR study, the research team collected a second round of thermal sensor data, 
making comparisons possible of the performance (true detection accuracy and F1 scores) of not 
only the LiDAR and thermal sensors from the second study’s data collection but also the 
performance of the thermal sensors across two separate time points. The Analysis section that 
follows provides performance metrics for the second round of thermal sensor data collection, a 
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comparison of the performance of the two rounds of thermal data collection, and a comparison of 
the LiDAR sensors and thermal sensors. 

ANALYSIS 

Infrared Thermal Sensor Data From Study 2 

Table 26 shows the performance of the thermal sensors for each vulnerable road user type. 
Table 27 shows sensor performance at slow and fast speeds. Table 28 shows the performance of 
the thermal sensors at slow and fast speeds but excludes the three-adult-pedestrian conditions. 

Table 26. Performance of thermal sensors during study 2 across vulnerable road user 
types. 

Vulnerable Road User Type 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Single adult pedestrian 84 91 0.88 
Child pedestrian dummy 88 98 0.92 
Wheelchair user 91 99 0.95 
Three adult pedestrians 38 100 0.55 
Bicyclist 89 96 0.92 
Scooter user 83 91 0.87 

Table 27. Performance of thermal sensors during study 2 at slow and fast speeds. 

Speed 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Slow 65 95 0.77 
Fast 72 97 0.83 

Table 28. Performance of thermal sensors during study 2 at slow and fast speeds without 
three-adult-pedestrian conditions. 

Speed 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Slow 85 94 0.89 
Fast 89 96 0.92 

Table 29 shows the performance of the thermal sensors during the day and at night. Table 30 
shows the performance of the thermal sensors during the day and night but excludes the 
three-adult-pedestrian conditions. 

Table 29. Performance of thermal sensors during study 2 during the day and night. 

Time of Day 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Day 71 96 0.81 
Night 67 96 0.79 
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Table 30. Performance metrics of thermal sensors during study 2 during the day and night 
without the three-adult-pedestrian conditions. 

Time of Day 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Day 84 94 0.89 
Night 90 95 0.92 

Table 31 shows the performance of the thermal sensors at an intersection and at midblock. 
Table 32 shows the performance of the thermal sensors at an intersection and at midblock but 
excludes the three-adult-pedestrian conditions. 

Table 31. Performance of thermal sensors during study 2 at an intersection and at 
midblock. 

Location 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Intersection 69 95 0.8 
Midblock 67 98 0.8 

Table 32. Performance of thermal sensors during study 2 at an intersection and at 
midblock without the three-adult-pedestrian conditions. 

Location 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Intersection 88 94 0.91 
Midblock 85 97 0.91 

Notably, the data collection for the thermal sensors during study 2 was slightly different than the 
first round of data collection. Specifically, researchers conducted eight trials for each condition, 
compared to the six conducted in study 1. Additionally, the researchers excluded the heavy 
clothing condition from study 2. Researchers included the heavy clothing condition in study 1 to 
see if the insulation from the heavy clothing would impair the thermal sensors’ ability to detect 
pedestrians. Based on the results from study 1, the researchers deemed that insulation did not 
have an effect on the thermal sensors’ ability and would not influence the ability of the LiDAR 
sensors. Therefore, this condition was excluded from the comparison. Finally, a motorized 
wheelchair was used in study 2 in place of the manual wheelchair used in study 1. 

Comparison of Thermal Sensor Performance Across Study 1 and 2 

The following results are based on a Poisson regression model of the two sets of data collected 
from the thermal sensors across the intersection and midblock using true detection accuracy, 
system accuracy, and the F1 score as dependent variables. 

Table 33 shows study 2 had lower true detection accuracy compared with study 1. The analysis 
indicated the thermal sensors were less likely to detect vulnerable road users crossing at an 
intersection in study 2, as compared with study 1 (p = 0.003). When the thermal sensors detected 
a crossing in both studies, the likelihood that the crossing was a true event was high. Study 2 had 
a lower F1 score compared with study 1 because study 2 also had lower true detection accuracy. 
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Table 33. Performance of thermal sensors from study 1 and study 2 at intersection with the 
three-adult-pedestrian conditions (excluding heavy clothing condition). 

Experiment 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
1 76 98 0.86 
2 69 95 0.8 

Table 34 shows that study 2 had lower true detection accuracy than study 1. The analysis 
indicated thermal sensors from study 2 were less likely to detect vulnerable road users, excluding 
the three adult vulnerable road user conditions , as compared with study 1 (p = 0.0003). When 
thermal sensors detected a crossing in both experiments, the likelihood that a crossing was a true 
event was high. Study 2 had a lower F1 score than study 1 because of study 2’s lower true 
detection accuracy. 

Table 34. Performance of thermal sensors from study 1 and study 2 at intersection without 
the three-adult-pedestrian conditions (excluding heavy clothing condition). 

Experiment 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
1 97 97 0.97 
2 88 94 0.91 

Table 35 shows that study 2 had lower true detection accuracy at midblock crossings than study 
1. The analysis indicated the thermal sensors from study 2 were less likely to detect vulnerable 
road users at midblock crossings, as compared with the first experiment (p = 0.003). When the 
thermal sensors detected a crossing in both study 1 and study 2, the likelihood that the crossing 
was a true event was nearly perfect. Study 2 had a lower F1 score than study 1 because of 
study 2’s lower true detection accuracy. 

Table 35. Performance of thermal sensors from study 1 and study 2 at midblock with the 
three-adult-pedestrian conditions (excluding heavy clothing condition). 

Experiment 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
1 81 100 0.9 
2 67 98 0.8 

Table 36 shows that study 2 had lower true detection accuracy than study 1 at midblock 
crossings, excluding the three adult pedestrian conditions. The analysis indicated the thermal 
sensors from study 2 were less likely to detect vulnerable road users at a midblock crossing, 
excluding the three adult pedestrian conditions, as compared with study 1 (p = 0.02). When the 
thermal sensor detected a crossing in study 1 and study 2, the likelihood that the crossing was a 
true event was nearly perfect. Study 2 had a lower F1 score than study 1 because of study 2’s 
lower true detection accuracy. 
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Table 36. Performance of thermal sensors from study 1 and study 2 at midblock without 
the three-adult-pedestrian conditions (excluding heavy clothing condition). 

Experiment 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
1 94 100 0.97 
2 85 97 0.91 

Comparison of Thermal and LiDAR Sensor Performance 

The research team used a Poisson regression model to compare the true detection accuracy, 
system accuracy, and F1 score of the thermal sensors and LiDAR sensors at both the intersection 
and midblock. The child dummy, scooter, wheelchair, and bike-night-fast-speed conditions were 
all excluded because the LiDAR sensors were unable to make any detections of those vulnerable 
road user types under certain conditions. Only conditions in which at least one detection was 
successfully made for all conditions were included. 

Table 37 shows the LiDAR sensor had lower true detection accuracy than the thermal sensor at 
the intersection crossing, although the analysis did not show a significant difference between 
LiDAR and thermal sensors in capturing a crossing. When both sensors detected a crossing, the 
likelihood that the crossing was a true event was nearly perfect. The LiDAR sensors had a lower 
F1 score than the thermal sensors because of the LiDAR sensor’s lower true detection accuracy. 

Table 37. Performance of LiDAR and thermal sensors at intersection with the 
three-adult-pedestrian conditions (excluding child dummy, scooter, and wheelchair 

conditions and all fast bicycle night trails). 

Sensor 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Thermal 56 97 0.71 
LiDAR 47 100 0.64 

Table 38 shows the LiDAR sensor had lower true detection accuracy than the thermal sensor at 
the intersection even when excluding the three adult pedestrian conditions. The analysis 
indicated the LiDAR sensor was less likely to capture a crossing, as compared with the thermal 
sensor (p = 0.04). When both sensors detected a crossing, the likelihood that the crossing was a 
true event was high. The LiDAR sensor had a lower F1 score than the thermal sensor because of 
the LiDAR sensor’s lower true detection accuracy. 



34 
 

Table 38. Performance of LiDAR and thermal sensors at intersection without the 
three-adult-pedestrian conditions (excluding child dummy, scooter, and wheelchair 

conditions and all fast bicycle night trails). 

Sensor 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Thermal 95 95 0.95 
LiDAR 80 100 0.89 

Table 39 shows the LiDAR sensor had higher true detection accuracy than the thermal sensor at 
the midblock crossing, although the analysis did not show a significant difference between the 
LiDAR and thermal sensors in capturing a crossing. When both sensors detected a crossing, the 
likelihood that the crossing was a true event was nearly perfect. The thermal sensor had a lower 
F1 score than the LiDAR sensor because of the thermal sensor’s lower true detection accuracy. 

Table 39. Performance of LiDAR and thermal sensors at midblock with the 
three-adult-pedestrian conditions (excluding child dummy and scooter conditions.) 

Sensor 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Thermal 61 97 0.75 
LiDAR 64 100 0.78 

 

Table 40 shows the LiDAR sensor had higher true detection accuracy than the thermal sensor at 
the midblock crossing even when excluding the three adult pedestrians conditions, but the 
analysis didn’t show a significant difference in the likelihood of capturing a crossing between the 
LiDAR and thermal sensors. When both sensors detected a crossing, the likelihood that the 
crossing was a true event was high. The thermal sensor had a lower F1 score than the LiDAR 
sensor because of the thermal sensor’s lower true detection accuracy. 

Table 40. Performance of LiDAR and thermal sensors at midblock without the 
three-adult-pedestrian conditions (excluding child dummy and scooter conditions.) 

Sensor 
True Detection 

Accuracy (percent) 
System Accuracy 

(percent) F1 Score 
Thermal 84 95 0.89 
LiDAR 90 100 0.95 

DISCUSSION AND CONCLUSION 

Based on the results of the comparison, the performance of the thermal sensors across the first 
and second rounds of data collection differed significantly. Specifically, the sensors had better 
true-detection accuracy in the first round of data collection compared with the second round at 
both the midblock and intersection crossings. No statistical difference was present between 
system accuracy scores for study 1 and study 2. F1 scores were significantly different but only 
due to the difference in the true detection accuracy of the two time points.  
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These types of advanced detection technologies must have the ability to consistently detect 
vulnerable road users in real-world settings to improve the collection of vulnerable road user 
volumetric data. As such, the inconsistency in thermal sensor performance between study 1 and 
study 2 suggests the thermal sensors used in this study may not improve real-world vulnerable 
road user volumetric data—and thus are not suitable for real-world application. 

Several possible explanations exist for the significant differences in performance of the thermal 
sensors between study 1 and study 2 , as follows: 

• Study 2 had more trials. If study 1 also had more trials, the sensor detection rates of 
study 1 might have been closer to the detection rates of study 2. If a larger sample size, 
based on a different power analysis, is collected in future studies, the differences may 
possibly disappear.  

• Study 1 used a manual wheelchair, but study 2 used an electric-powered wheelchair. 
When comparing the true detection accuracies of the different vulnerable road user types, 
a difference existed between the detection of wheelchair users in study 1 compared to 
Study 2 (97 percent to 91 percent, respectively). However, this reduction in true detection 
accuracy can also be seen in all the other vulnerable road user types—suggesting the 
difference in the types of wheelchairs wasn’t the only possible explanation for the sensor 
performance differences during the two rounds. 

• Study 1 took place from January to April, and study 2 took place from September to 
December. However, the difference in average temperature across the data collection 
periods was only 2 °F (61.30 °F versus 59.34 °F, respectively). 

Regardless of the inconsistency in the performance of the thermal sensors, a greater difference 
occurred between the thermal and LiDAR sensors. Overall, the thermal sensors performed better 
than the LiDAR sensors at the intersection, but the LiDAR sensors performed better at the 
midblock crossing, whether including or excluding the three-adult-pedestrian trials. Notably, 
however, several conditions were excluded from this comparison due to the LiDAR’s inability to 
make any detections. Specifically, the LiDAR was unable to detect most conditions involving the 
vulnerable road user types that used a scooter or a wheelchair and the bicyclist traveling fast at 
night. It was also unable to make a single detection of the child pedestrian dummy. The fact that 
the LiDAR was unable to detect any trials of these specific vulnerable road user types is a 
significant weakness when compared to the performance of the thermal sensors. 

Overall, the LiDAR sensor failed to meet most of the criteria needed for the sensor to be 
applicable for real-world use; meanwhile, the thermal sensor, despite being slightly inconsistent 
in its detection rates, met far more of the criteria. However, both sensors were not able to detect 
multiple pedestrians clustered closely together, which is primarily how pedestrians cross through 
crosswalks in highly populated areas. Additional developments and advancements of these 
sensors and the data processing software and detection algorithms must be made before these 
sensors can consistently improve the detection rates of vulnerable road users in active roadways. 
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That said, technology evolves at a rapid pace; as such, the sensors used in these studies are 
already outdated. The LiDAR sensors used are no longer in distribution, and a new version of the 
infrared thermal imaging sensors uses updated detection technology integrated into the sensors. 
The new LiDAR sensors would presumably have a greater number of lasers and thus a denser 
point cloud, allowing for more detail in detecting agents in the roadway. Furthermore, since the 
beginning of the current project, the infrared thermal imaging sensors are reputed to have a new 
processing algorithm with an improved method for detecting and classifying agents on the 
roadway. 

Considering these study results and the rapid growth of detection technologies, these 
technologies, such as thermal and LiDAR sensors (with enough time and development from 
manufacturers) may one day be used to improve vulnerable road user detection, consequently 
improving the collection of vulnerable road user volumetric data on real-world roads. This 
volumetric data will be crucial in helping researchers determine the true level of exposure 
vulnerable road users face when crossing our roadways, both at intersections and at midblock 
crossings.
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